N = 4 super NLS-mKdV hierarchies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The N = 2 super W 4 algebra and its associated generalized KdV hierarchies

We construct the N = 2 super W4 algebra as a certain reduction of the second Gel’fand-Dikii bracket on the dual of the Lie superalgebra of N = 1 super pseudodifferential operators. The algebra is put in manifestly N = 2 supersymmetric form in terms of three N = 2 superfields Φi(X), with Φ1 being the N = 2 energy momentum tensor and Φ2 and Φ3 being conformal spin 2 and 3 superfields respectively...

متن کامل

N = 4 Super Kdv Equation

We construct N = 4 supersymmetric KdV equation as a hamiltonian flow on the N = 4 SU(2) super Virasoro algebra. The N = 4 KdV superfield, the hamiltonian and the related Poisson structure are concisely formulated in 1D N = 4 harmonic superspace. The most general hamiltonian is shown to necessarily involve SU(2) breaking parameters which are combined in a traceless rank 2 SU(2) tensor. First non...

متن کامل

On the Hierarchies of Higher Order Mkdv and Kdv Equations

The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces b H s (R) defined by the norm ‖v0‖ b Hr s (R) := ‖〈ξ〉 b v0‖Lr′ ξ , 〈ξ〉 = (1 + ξ) 1 2 , 1 r + 1 r = 1. Local well-posedness for the jth equation is shown in the parameter range 2 ≥ r > 1, s ≥ 2j−1 2r . The proof uses an appropriate variant of the Fourier restriction norm method. A coun...

متن کامل

Fredholm Determinants and the mKdV / Sinh - Gordon Hierarchies

For a particular class of integral operators K we show that the quantity φ := log det (I + K)log det (/ K) satisfies both the integrated mKdV hierarchy and the Sinh-Gordon hierarchy. This proves a conjecture of Zamolodchikov.

متن کامل

Hamiltonian Curve Flows in Lie Groups G ⊂ U (n ) and Vector Nls, Mkdv, Sine-gordon Soliton Equations

A bi-Hamiltonian hierarchy of complex vector soliton equations is derived from geometric flows of non-stretching curves in the Lie groups G = SO(N + 1), SU(N) ⊂ U(N), generalizing previous work on integrable curve flows in Riemannian symmetric spaces G/SO(N). The derivation uses a parallel frame and connection along the curves, involving the Klein geometry of the group G. This is shown to yield...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters B

سال: 1997

ISSN: 0370-2693

DOI: 10.1016/s0370-2693(97)00605-9